Developing Actionable Trading Strategies
نویسنده
چکیده
Actionable trading strategies for trading agents determine the potential of the simulated models in real-life markets. The development of actionable strategies is a non-trivial task, which needs to consider real-life constraints and organizational factors in the market. In this paper, we first analyze such constraints on developing actionable trading strategies. Further we propose an actionable trading strategy development framework. These points are deployed into developing a series of actionable trading strategies through optimizing, enhancing, discovering and integrating actionable trading strategies. We demonstrate working case studies in market data. These approaches and their performance are evaluated from both technical and business perspectives. Actionable trading strategies have potential to supporting smart trading decision for brokerage firms and financial companies.
منابع مشابه
Domain-Driven Actionable Knowledge Discovery in the Real World
Actionable knowledge discovery is one of Grand Challenges in KDD. To this end, many methodologies have been developed. However, they either view data mining as an autonomous data-driven trial-and-error process, or only analyze the issues in an isolated and case-by-case manner. As a result, the knowledge discovered is often not actionable to constrained business. This paper proposes a practical ...
متن کاملMining in-depth patterns in stock market
Stock trading plays an important role for supporting profitable stock investment. In particular, more and more data mining-based technical trading rules have been developed and used in stock trading systems to assist investors with their smart trading decisions. However, many mined trading rules are of no interest to traders and brokers because they are discovered based on statistical significa...
متن کاملSocial signals and algorithmic trading of Bitcoin
The availability of data on digital traces is growing to unprecedented sizes, but inferring actionable knowledge from large-scale data is far from being trivial. This is especially important for computational finance, where digital traces of human behaviour offer a great potential to drive trading strategies. We contribute to this by providing a consistent approach that integrates various datas...
متن کاملSocial signals and algorithmic trading of
The availability of data on digital traces is growing to unprecedented sizes, but inferring actionable knowledge from large-scale data is far from being trivial. This is especially important for computational finance, where digital traces of human behaviour offer a great potential to drive trading strategies. We contribute to this by providing a consistent approach that integrates various datas...
متن کاملAgent Collaboration for Multiple Trading Strategy Integration
The collaboration of agents can undertake complicated tasks that cannot be handled well by a single agent. This is even true for excecuting multiple goals at the same time. In this paper, we demonstrate the use of trading agent collaboration in integrating multiple trading strategies. Trading agents are used for developing quality trading strategies to support smart actions in the market. Evolu...
متن کامل